Tentukan akar akar dari persamaan kuadrat berikut dengan cara memfaktorkan!
a. x² - 14x + 48 = 0
b. x² + 2x - 80 = 0
a. x² - 14x + 48 = 0
b. x² + 2x - 80 = 0
Penjelasan dengan langkah-langkah:
[tex]soal \: a \\ {x}^{2} - 14x + 48 = 0 \\ (x \times x) - 14x + 48 = 0 \\ x - 14x + 48 = 0 \\ x + 34 = 0 \\ 34x = 0 \\ x = \frac{0}{34} = 34 \\ soal \: b \\ {x}^{2} + 2x - 80 = 0 \\ (x \times x) - 2x - 80 = 0 \\ x - 2x - 80 = 0 \\ x - 82x = 0 \\ - 81x = 0 \\ x = \frac{0}{ - 81} = - 81[/tex]
jadikan yang terbaiknya
a. x² - 14x + 48 = 0
[-14=-8 + (-6)] [48= 8×6]
(x - 8)(x - 6)
X1 = 8 X2 = 6
b.x² + 2x - 80 = 0
[2 = 10 + (-8)] [-80 = 10 × (-8)]
(x + 10)(x - 8)
X1 = -10 X2 = 8
[answer.2.content]